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ABSTRACT. Concavity and sigmoidicity hypotheses are developed as a natural extension of the

simple ordered hypothesis in normal means. Those hypotheses give reasonable shape constraints for

obtaining a smooth response curve in the non-parametric input±output analysis. The slope change

and in¯ection point models are introduced correspondingly as the corners of the polyhedral cones

de®ned by those isotonic hypotheses. Then a maximal contrast type test is derived systematically as

the likelihood ratio test for each of those changepoint hypotheses. The test is also justi®ed for the

original isotonic hypothesis by a complete class lemma. The component variables of the resulting

test statistic have second or third order Markov property which, together with an appropriate non-

linear transformation, leads to an exact and very ef®cient algorithm for the probability calculation.

Some considerations on the power of the test are given showing this to be a very promising way of

approaching to the isotonic inference.

Key words: concavity, extended max t test, in¯ection, maximin linear test, non-parametric

dose±response analysis, Markov property, sigmoidicity, slope change

1. Introduction

The concavity or convexity hypothesis has naturally been introduced for analysing the

age±period±cohort effects model where all those three effects have natural ordering and

yet only the second order differences are estimable for each of them (Hirotsu, 1988). The

concavity is also a shape constraint typically met in economic models such as utility and

production functions. It is often found plausible, for example, to assume that holding

land ®xed the output of corn rises with the input of seed but with diminishing returns,

see Matzkin (1994), for example. A dose±response curve is essentially sigmoidal if the

dose range is taken suf®ciently large so that we can assume the convexity under the

in¯ection point if the sigmoidicity hypothesis is supported and the in¯ection point is

detected. The convexity assumption is useful not only for obtaining the smooth response

curve but also for the low dose extrapolation of the risks in the non-parametric toxicity

analysis. Hirotsu & Srivastava (2000) show, for example, how to improve the

simultaneous upper bound of the risks under the convexity assumption. In this respect

also, the maximal contrast type test statistic is useful since it can point out the in¯ection

point.

Now, suppose we have data y1; . . .; yK from the K independent normal populations

N�lk ; r
2�; k � 1; . . .;K. Then a relationship has been demonstrated in Hirotsu (1997) between

the simple ordered hypothesis

H1: l1 � � � � � lK

with at least one inequality strict and the changepoint hypothesis

K1: l1 � � � � � ls < ls�1 � � � � � lK ; for some s � 1; . . .;K ÿ 1;
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where s is an unknown changepoint and the null hypothesis is

H0: l1 � � � � � lK

for both cases. It is simply that a set of component hypotheses of K1 indexed by s forms the

K ÿ 1 corners of the polyhedral cone de®ned by H1. Assuming r2 to be known tentatively the

likelihood ratio test for K1 is easily obtained as

max
s�1;...;Kÿ1

1

s
� 1

K ÿ s

� �ÿ1=2
1

r
Y �s

K ÿ s
ÿ Ys

s

� �
> c; �1�

where Ys � y1 � � � � � ys; Y �s � ys�1 � � � � � yK and c is chosen to meet the required

signi®cance level; see Sen & Srivastava (1975) for the derivation of the statistic. The test

statistic is also interpreted as the standardized maximum of the projections of the ef®cient

score vector onto the K ÿ 1 corners of the polyhedral cone, where an ef®cient score vector is

de®ned as the derivative of the log likelihood with respect to the parameter lk ; k � 1; . . .;K,

and evaluated at the null hypothesis. On the other hand a complete class of tests for the

ordered alternative H1 is given by all the tests that are increasing in every element of those

�K ÿ 1� projections and with convex acceptance regions, see Hirotsu (1982) for details. Then

it happens that the likelihood ratio test statistic for K1 has been independently proposed and

justi®ed also in the stream of the isotonic inference as a useful test statistic. In this sense it

should be compared with the maximal contrast type test by Williams (1971) and its

modi®cation by Marcus (1976). Actually the test statistic (1) has been called the max t and
shown, as compared with other methods, to have high power in the wide range of the ordered

alternatives speci®ed by H1; see Hirotsu (1979) and Hirotsu et al. (1992) for details. The max t
statistic in the unbalanced one-way layout setting is also introduced in Hirotsu et al. (1992).

In this paper we extend the relationship to more general isotonic hypotheses which will be

useful, for example, as shape constraints for a non-parametric dose±response analysis. It is

interesting and useful to ®nd out the corner models to ®gure out those generalized isotonic

hypotheses.

In section 2 of the present paper we ®rst introduce the concavity hypothesis as one of those

reasonable shape constraints and derive a slope change model as its corner model. Then the

likelihood ratio test statistic for the slope change model is developed as an extension of max t
and shown to be an appropriate test statistic also for the concavity hypothesis. Similarly the

sigmoidicity hypothesis and a corresponding in¯ection point model are demonstrated in

section 3 as well as the extended max t test derived as a likelihood ratio test for the latter

model. Section 4 is devoted to the distribution theory of those extended max t tests and a very

ef®cient recurrence formula for the level probability and also for the power calculation is

given. It is based on the Markov property of the component variables of the test statistic and

considered as a natural extension of the approach taken by Hawkins (1977) and Worsley

(1986) for the simple changepoint hypothesis. In this case, however, the Markov properties

are second and third order differently from the ®rst order in the previous papers and a non-

linear transformation introduced in section 5 is inevitable for reducing the number of the cut

points for the conditioning variables in the recurrence formula. Some considerations on the

power are given in section 6. It is ®rst argued that the maximal angles of the polyhedral cones

de®ned by the concavity and sigmoidicity hypotheses are smaller than those de®ned by the

simple order suggesting the appropriateness of the extended max t as compared with the

classical max t. Then the maximin linear test is introduced for comparisons of powers for

each of the concavity and sigmoidicity hypotheses. The comparisons are in favour of those

extended max t tests. All the theories are given for the normal model but they can be applied
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asymptotically also to the rank or the binomial data and have much wider applications. An

application to the binomial data yi is given in section 7. It should be noted that since the

extended max t tests are, like max t, based on the weighted sum of the yi the Lindeberg

condition for asymptotic normality is more easily met than that for each yi, see app. 3 of

Hirotsu & Srivastava (2000).

2. The concavity hypothesis and a slope change model

2.1. Mathematical formulation

Suppose we have data from a one-way layout

yij � li � eij; i � 1; . . .;K; j � 1; . . .; ni;

where the eij are independently distributed as N�0; r2� and we assume tentatively r2 to be

known. Suppose we have an explanatory variable xi at the level i, x1 � � � � � xK , then a

concavity hypothesis is de®ned as

H2:
l2 ÿ l1

x2 ÿ x1
� l3 ÿ l2

x3 ÿ x2
� � � � � lK ÿ lKÿ1

xK ÿ xKÿ1

with at least one inequality strict. This is an extension of the monotone hypothesis in the ®rst

order differences of means introduced in Hirotsu (1986) and goes back to the previous

situation if we take xis equally spaced. Now we can give lemma 1 asserting a relationship

between the concavity hypothesis and a slope change model.

Lemma 1

Each component of a slope change model de®ned by

K2�s�:
l2 ÿ l1

x2 ÿ x1
� � � � � ls�1 ÿ ls

xs�1 ÿ xs
� b;

ls�2 ÿ ls�1
xs�2 ÿ xs�1

� � � � � lK ÿ lKÿ1
xK ÿ xKÿ1

� b� �< b�

8><>:
and indexed by s � 1; . . .;K ÿ 2 forms a set of K ÿ 2 corner vectors of the polyhedral cone

de®ned by H2.

Proof. The concavity hypothesis H2 can be written in the matrix notation as

L�K
0l � 0 �2�

with

L�K
0 �

1
x1ÿx2

1
x2ÿx1
� 1

x3ÿx2
1

x2ÿx3
0 � � � 0

. . .

0 � � � 0 1
xKÿ2ÿxKÿ1

1
xKÿ1ÿxKÿ2

� 1
xKÿxKÿ1

1
xKÿ1ÿxK

264
375

Kÿ2�K

:

Since there are two additional degrees of freedom to de®ne l satisfying (2) the restriction

B0l � 0 �3�
is imposed, where

B � 1 1 � � � 1
x1 x2 � � � xK

� �0
:
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It is easy to verify B0L�K � 0 and we can add restriction (3) without violating (2). Then all the l

satisfying (2) and (3) can be expressed as such l satisfying

B0

L�K
0

� �
l � 0

h

� �
with some h � 0. Then for all those l we have an expression

l � fB�B0B�ÿ1B0 � L�K�L�K 0L�K�ÿ1L�K
0gl

� L�K�L�K 0L�K�ÿ1h:
The ®rst equality holds since PB � B�B0B�ÿ1B0 and PL�K � L�K�L�K 0L�K�ÿ1L�K

0 are the projection

matrices of rank 2 and K ÿ 2 and orthogonal each other. Thus any l satisfying (2) and (3)

can be expressed by the positive linear combination of the columns of L�K�L�K 0L�K�ÿ1 like

l � L�K�L�K 0L�K�ÿ1�L�K 0l�. Conversely it is obvious that every l expressed by

L�K�L�K 0L�K�ÿ1h; h � 0 satis®es the restrictions (2) and (3). It implies that K ÿ 2 columns of

L�K�L�K 0L�K�ÿ1 give the corner vectors of the polyhedral cone de®ned by (2) and (3). Excluding

the restriction (3) we have an expression for l satisfying H2 like

l � B�g0; g1�0 � L�K�L�K 0L�K�ÿ1h; h � 0 �4�
with g0 and g1 arbitrary regression coef®cients. Now we give an explicit form of L�K�L�K 0L�K�ÿ1
to complete the proof. First we rewrite the model K2�s� in the linear form like

K2�s�: l � �B bs�
g0
g1
g

0@ 1A � B�g0; g1�0 � bsgs �5�

with gs � bÿ b� > 0 and

bs � �PB ÿ I��0; . . . 0; xs�2 ÿ xs�1; . . .; xK ÿ xs�1�0:
Then it is easy to verify L�K

0bs to be equal to �0 � � � 010 � � � 0�0 with a unit element as its sth
component and this, together with the relation B0bs � 0, implies the equality

L�K�L�K 0L�K�ÿ1 � �b1; . . .; bKÿ2�: �6�
Then by comparing (4) and (5) we see that every model K2�s� indexed by s � 1; . . .;K ÿ 2

forms K ÿ 2 corners of H2.

A brief sketch of the cone and its standardized corner vectors are given in Fig. 1 for K � 5

and equal spacing case. The direction of second order polynomial lq � �ÿ2 1 2 1 ÿ 2�0 is
shown to be located inside the cone.

2.2. Test statistic

In the expression �5� the generalized least squares estimator of gs is obtained as

S�s � Mÿ1s b0sX
ÿ1fI ÿ B�B0Xÿ1B�ÿ1B0Xÿ1g�y

with variance Mÿ1s , where �y � ��y1:; . . .; �yK:�0 is the vector of means with dispersion matrix

X � diag�r2=ni� a diagonal matrix with r2=ni as its ith diagonal element and

Ms � b0sX
ÿ1bs ÿ b0sX

ÿ1B�B0Xÿ1B�ÿ1B0Xÿ1bs: Then the likelihood ratio test statistic for the

null hypothesis

HB: l � B�g0; g1�0

against the one-sided slope change alternative K2�s� with g > 0 at given s is obtained as

Ss � M1=2
s S�s . Actually Ss is the square root of minus twice the log likelihood ratio but it will be
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natural to call it the likelihood ratio statistic concerning the one-sided alternative. The

likelihood ratio test statistic for the slope change model is then obtained by taking the

maximum of Ss over s � 1; . . .;K ÿ 2,

S � max Ss;

thus giving a natural extension of max t of (1). By virtue of the relation (6) we have a very

convenient expression of s � �S1; . . .; SKÿ2�0 like
s � diag�Mÿ1=2s ��L�K 0L�K�ÿ1L�K

0Xÿ1f�yÿ Ê0��y�g; �7�
where Ê0��y� � B�B0Xÿ1B�ÿ1B0Xÿ1�y is the maximum likelihood estimator of the mean vector

under the null hypothesis HB. Thus each component of the statistic s is understood as the

standardized projection of the ef®cient score vector evaluated at the null hypothesis HB onto

the corner vector of the polyhedral cone de®ned by H2 and then the likelihood ratio test is

supported by a compete class lemma given in Hirotsu (1982) to be an appropriate test also for

the concavity hypothesis H2. It is shown by power comparisons in section 6 that the test has

some advantage over the Abelson & Tukey (1963) type maximin linear test against the

concavity hypothesis.

It should be noted that the convexity hypothesis can be dealt with just by inverting the sign

of the test statistic.

3. The sigmoidicity hypothesis and an in¯ection point model

We go one step ahead of H2 by considering the ordered hypothesis in the second order

differences,

H3:
1

x3 ÿ x1

l3 ÿ l2

x3 ÿ x2
ÿ l2 ÿ l1

x2 ÿ x1

� �
� � � � � 1

xK ÿ xKÿ2

lK ÿ lKÿ1
xK ÿ xKÿ1

ÿ lKÿ1 ÿ lKÿ2
xKÿ1 ÿ xKÿ2

� �
: �8�

Fig. 1. Polyhedral cone de®ned by (2) and its corner vectors with K � 5 and equal spacing.
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Then we can show each component of the model de®ned by

K3�s�: l � Ccs� ��g0; g1; g2; g�0; g > 0;

and indexed by s � 1; . . .;K ÿ 3 with

C �
1 x1 x21
..
. ..

. ..
.

1 xK x2K

0B@
1CA;

and

cs � �Pc ÿ I��0 � � � 0 �xs�3 ÿ xs�1��xs�3 ÿ xs�2� � � � �xK ÿ xs�1��xK ÿ xs�2��0;
Pc � C�C0C�ÿ1C0

forms a set of K ÿ 3 corner vectors of the polyhedral cone de®ned by H3, see appendix for a

proof. It should be noted that the model K3�s� is composed of two segments of the second

order polynomials having two common values at x � xs�1 and xs�2, see Fig. 2. This is in

contrast to the slope change model K2�s� where two segments of the linear equations have only

one common value at x � xs�1. The model K3�s� suggests a change of response curve from

convex to concave between the two points xs�1 and xs�2 and may be called an in¯ection point

model and then we call H3 a sigmoidicity hypothesis. It is not exactly the same with

Schmoyer's (1984) de®nition of sigmoidicity which is the unimodal hypothesis of the slopes of

the subsequent segments but has a close relationship.

By similar arguments to section 2.2 the likelihood ratio test statistic for the in¯ection point

model is obtained as the maximal component of

t � diag�Nÿ1=2s ��Q�K 0Q�K�ÿ1Q�K
0Xÿ1f�yÿ Ê0��y�g;

where Ns is Ms with bs and B replaced by cs and C, respectively, Q�K
0 a K ÿ 3� K coef®cient

matrix in expressing the inequality (8) like Q�K
0l � 0 and Ê0��y� � C�C0Xÿ1C�ÿ1C0Xÿ1�y in this

case. The explicit form of Q�K
0 is given in the appendix. The statistic is again appropriate for the

sigmoidicity hypothesis by virtue of the complete class lemma.

Fig. 2. Sketch of gC 0s with K � 6, s � 1 and equal spacing.
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4. Distribution theory of the maximal components of s and t

The distribution theory for s and t goes almost parallel and we mainly deal with s here and

only the result is stated brie¯y for t.

By a simple matrix algebra and as shown generally in Hirotsu (1982) the statistic s of (7) can

be written as

s � diag�Mÿ1=2s ��L�K 0XL�K�ÿ1L�K
0�y

and then the covariance matrix is obtained simply as

var�s� � diag�Mÿ1=2s ��L�K 0XL�K�ÿ1 diag�Mÿ1=2s �: �9�
By virtue of the form of L�K

0 and diagonal matrix X this is an inverse matrix of a penta-

diagonal matrix and it is easy to show that for any partition �s01; s02�0 of s the conditional

distribution of s1 given s2 depends only on the ®rst two elements of s2 implying the second

order Markov property in the sequence S1; . . .; SKÿ2 of the components of s. By this Markov

property we have a simple recurrence formula for the joint probability

Pi�so� � prfS1 < so; . . .; SKÿ2 < sog;
where the index i takes 0 or 1 according to the null or the alternative distribution. Then the p
value for the observed maximum so is obtained as

p � prfmax Ss � sojH0g � 1ÿ P0�so�:
For the recurrence formula de®ne the conditional probability

Fss�1�sojSs; Ss�1� � prfS1 < so; . . .; Ss�1 < sojSs; Ss�1g; s � 1; . . .;K ÿ 1;

where for convenience we introduce SKÿ1 and SK which are de®ned to be zero so that

Pi�so� � FKÿ1K�sojSKÿ1; SK� is an unconditional probability.

Starting from the initial function

F12�sojS1; S2� �
1; S1 < so; S2 < so ,

0; otherwise

�
we can calculate Fss�1 recursively by a single numerical integration with respect to Ss. We state

the formula in lemma 2.

Lemma 2 Recurrence formula for Fss�1
For s � 1; . . .;K ÿ 2 we have

Fs�1s�2�sojSs�1; Ss�2� �
R so

ÿ1 Fss�1�sojSs; Ss�1�fsjs�1;s�2 dSs; Ss�2 < so ,

0; otherwise,

�
�10�

where fsjs�1;s�2 � fsjs�1;s�2�SsjSs�1; Ss�2� is the conditional probability density function of Ss

given Ss�1 and Ss�2.

Proof. By the law of total probability we have

Fs�1s�2�sojSs�1; Ss�2� �
Z

pr�S1 < so; . . .; Ss�2 < sojSs; Ss�1; Ss�2�fsjs�1;s�2 dSs:

If the inequality Ss�2 < so is satis®ed then we can discard the same inequality in the integrand

and get
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Fs�1s�2�sojSs�1; Ss�2� �
Z

Fss�1�sojSs; Ss�1�fsjs�1;s�2 dSs

applying the second order Markov property in S0ss. If Ss�2 � so obviously

Fs�1s�2�sojSs�1; Ss�2� � 0:

For the conditional density fsjs�1;s�2 let qij denote the �i; j� element of (9), then the conditional

distribution of Ss given Ss�1 and Ss�2 is a normal with mean

lss � �qss�1; qss�2� 1 qs�1s�2
qs�1s�2 1

� �ÿ1
�Ss�1 ÿ lss�1; Ss�2 ÿ lss�2�0 �11�

and variance

1ÿ �qss�1; qss�2� 1 qs�1s�2
qs�1s�2 1

� �ÿ1 qss�1
qss�2

� �
�12�

for s � 1; . . .;K ÿ 4, where lss is the sth component of E�s�. The last two steps of the

recurrence formula need some caution but we can deal with it simply by extending the

de®nition of �qij� up to 1 � i; j � K by

qij �
qij; 1 � i; j � K ÿ 2 ,

0; otherwise.

�
�13�

Then the formulae (11) and (12) for the conditional density fsjs�1;s�2 can be extended to

s � K ÿ 3 and K ÿ 2 as it is. It is easy, for example, to see that by the de®nition (13) we have

unconditional normal density N�lsgKÿ2; 1� for fKÿ2jKÿ1;K . Thus we can obtain Pi only by the

use of single integration recursively. Finally the difference between P0 and P1 is only that all the

lss vanish in the calculation of the conditional density for P0.

Similarly we have the third order Markov property for t which brings forth a recurrence

formula for the joint probabilities

Pi�to� � prfT1 < to; . . .; TKÿ3 < tog; i � 0; 1

based on the conditional probability

Fss�1s�2�tojTs; Ts�1; Ts�2� � prfT1 < to; . . .; Ts�2 < tojTs; Ts�1; Ts�2g:
The recurrence formula starts from the initial function

F123�tojT1; T2; T3� � 1; T1 < to; T2 < to; T3 < to;
0; otherwise

�
and renewed by the formula

Fs�1s�2s�3�tojTs�1; Ts�2; Ts�3�

�
R to
ÿ1 Fss�1s�2�tojTs; Ts�1; Ts�2�fsjs�1;s�2;s�3�TsjTs�1; Ts�2; Ts�3� dTs; Ts�3 < to;

0; otherwise.

(
�14�

up to s � K ÿ 3, where fsjs�1;s�2;s�3 is the conditional normal density and we de®ne

TKÿ2 � TKÿ1 � TK � 0. Again only a single integration is necessary although the conditioning

is now 3-dimensional.

Finally when r2 is unknown but available its unbiased estimate r̂2 which is distributed as a

constant times chi-squared variable independently of �y the formulae (10) and (14) can be easily

extended. It is only necessary to use the Studentized statistics by replacing r2 by r̂2 in

calculating the test statistics s and t. Then in calculating FKÿ1K and FKÿ2Kÿ1K , replace so and to
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by so�r̂=r� and to�r̂=r�, respectively, and take the expectation of the results with respect to the

distribution of r̂=r, which is a constant times chi variable. For example, denoting the

Studentized statistic by Sys and the chi variable with the degrees of freedom m by vm the formula

(10) can be rewritten asZ sovm=
��
m
p

ÿ1
Fss�1�sovm=

���
m
p jSys ; Sys�1�fsjs�1;s�2 dSys

and then we obtain FKÿ1K�sovm=
���
m
p jSyKÿ1; SyK� for each vm similarly to lemma 2. Finally we

obtain the joint probability

Pi�so� � prfSy1 < so; . . .; SyKÿ2 < sog
�
Z 1
0

FKÿ1K�sovm=
���
m
p jSyKÿ1; SyK�g�vm� dvm;

where g�vm� is the probability density function of the v-distribution with the degrees of

freedom m. Thus there is no numerical dif®culty in dealing with the unknown variance case.

5. An ef®cient execution of the recurrence formula

In executing the numerical integration of (10) with respect to Ss it is not possible to have values

of the integrand Fss�1�uojSs; Ss�1� beforehand at a small number of points �Ss; Ss�1� most

convenient for the integration, since an ef®cient distribution of the points for a numerical

integration is usually given only after knowing the shape of the integrand. A naõÈ ve method

therefore requires to evaluate Fss�1 at a large number of points �Ss; Ss�1� and to interpolate for

the other points. The method should, however, be very inef®cient and even infeasible for the

case of the in¯ection point model where the 3-dimensional conditioning is required. The

method also suffers from the errors induced by the interpolation. In the following we propose

a very ef®cient algorithm based on the transformation of the variables Ss, which will require

the calculation of Fss�1 at only 64 � 128 equidistant evaluation points for each transformed

variable and in the integration step use only those pre-calculated values of Fss�1 avoiding the

interpolation process.

First in the integration of (10) we replace ÿ1 by a suf®ciently large number ÿC and convert

the range of integration into [0,1] by a linear transformation

S�s � �Ss � C�=�so � C�
for each of s � 1; . . .;K ÿ 2. Then we employ a non-linear transformation

S�s � u�ts�; 0 � ts � 1; s � 1; . . .;K ÿ 2

with

u�t� � 1

2
� �2tÿ 1� 1

2
� x� 3x2 � 3x3

� �
; x � t�tÿ 1�

to obtain the recurrence formula in ts

F �s�1s�2�ts�1; ts�2� � �so � C�
Z 1

0

F �ss�1�ts; ts�1�f �sjs�1;s�2�tsjts�1; ts�2�u0�ts�dts;

where u0 is the derivative of u and

f �sjs�1;s�2�tsjts�1; ts�2�
� fsjs�1;s�2f�so � C�u�ts� ÿ Cj�so � C�u�ts�1� ÿ C; �so � C�u�ts�2� ÿ Cg:

Scand J Statist 29 Isotonic and changepoint analysis 133

Ó Board of the Foundation of the Scandinavian Journal of Statistics 2002.



By this transformation a singularity at the border of the integration resolves and we can

perform the integration by a simple trapezoidal rule with common evaluation points

ts � I=n; I � 0; 1; . . .; n for each ts; s � 1; . . .;K ÿ 2;

see Laurie (1996) for the details of this non-linear transformation.

Now starting from the initial function

F �12�t1; t2� �
1; 0 � t1 < 1; 0 � t2 < 1 ,
0; otherwise,

�
we proceed recursively by the formula

F �s�1s�2
I
n
;
J
n

� �
� �s0 � C�

Xn

H�0
F �ss�1

H
n
;
I
n

� �
f �sjs�1;s�2

H
n

I
n
;
J
n

����� �
u0

H
n

� �
1

n

� �
;

I ; J � 0; 1; . . .; n �15�
until s � K ÿ 2, where F �Kÿ2Kÿ1 should be calculated for I � 0; . . .; n retaining J � 0 and F �Kÿ1K

should be calculated only once at I � J � 0 with f �Kÿ2jKÿ1;K an unconditional density function.

It should be noted that we are avoiding the interpolation process. Obviously the function

u�H=n� and u0�H=n�; H � 0; 1; . . .; n; are common for each step and should be calculated only

once. Since for usual purposes the number n of evaluation points can be 64 for the second and

128 for the third order cases the formula (15) provides a very simple and ef®cient algorithm for

evaluating the required joint probability.

It is very easy to write down the formula for the in¯ection point model based on the third

order Markov property and it is omitted here.

6. Power comparisons

The max t test has been veri®ed to keep high powers for the wide range of the restricted

alternative in case of the simple ordered hypothesis. On the other hand it has been pointed out

that those maximal contrast type tests will not be so useful if the maximal angle of the

polyhedral cone is large, see Robertson et al. (1988, sect. 4.2±4.4). In particular Abelson

& Tukey (1963) type maximin linear test is said to be useful only for the number of levels K
under 5 in the simple ordered hypothesis case. We therefore show in Table 1 that the maximal

angles of the polyhedral cones treated here are much smaller than those of the simple ordered

hypothesis. It is a simple algebra to show that the cosine of the maximum angles are 1=�K ÿ 1�
and 2=�K ÿ 1� respectively for the monotonicity and convexity hypotheses. This suggests that

the maximal contrast type tests introduced here are even more appropriate than the max t test
in the simple ordered hypothesis. It suggests, however, the maximin linear test might do also as

well. For K � 6 and 8 and under equal spacing and equal sample sizes the maximin linear tests

are therefore searched for on the corners, edges and faces of each of the polyhedral cones

Table 1. Comparison of the maximal angles of the three types of polyhedral cones under the equal spacing as

expressed by the value of cosine

K

2 3 4 5 6 7 8 9 10

Monotonicity 1 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11

Convexity Ð 1 0.67 0.50 0.40 0.33 0.29 0.25 0.22

Sigmoidicity Ð Ð 1 0.75 0.60 0.50 0.43 0.38 0.33
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according to Abelson & Tukey (1963) and results are shown in Table 2. Then we compare the

powers of the extended max t tests and the maximin linear tests in Table 3 assuming equal

sample sizes and r2 known. We add in the comparisons the linear tests with coef®cients for the

quadratic and cubic patterns, which seem to be useful for the concavity and sigmoidicity

hypotheses, respectively. The upper percentiles of the extended max t tests have been obtained

Table 2. The coe�cients of the two types of linear tests in case of the equal spacing and equal sample size

k

1 2 3 4 5 6 7 8

(a) Maximin linear test

Convexity )0.5773 0.2829 0.2944 0.2944 0.2829 )0.5773
)0.6108 0.1673 0.2036 0.2399 0.2399 0.2036 0.1673 )0.6108

Sigmoidicity 2 )3 )1 1 3 )2
5 )5 )3 )1 1 3 5 )5

(b) Polynomial test

Convexity )5 1 4 4 1 )5
(Quadratic) )7 )1 3 5 5 3 )1 )7

Sigmoidicity 5 )7 )4 4 7 )5
(Cubic) 7 )5 )7 )3 3 7 5 )7

Table 3. Power comparisons of the maximal contrast tests and maximin linear test (equal spacing, equal

sample size and r2 known)

Corner and quadratic or cubic con®guration

Maximal

contrast

Maximin

linear

Polynomial

coef®cients

(1) Convexity hypothesis

)10 8 5 2 )1 )4 0.698 0.657 0.615

)20 2 24 11 )2 )15 0.721 0.657 0.747

)15 )2 11 24 2 )20 0.721 0.657 0.747

)4 )1 2 5 8 )10 0.698 0.657 0.615

quadratic 0.747 0.751 0.790

)7 4 3 2 1 0 )1 )2 0.674 0.623 0.535

)70 )5 60 41 22 3 )16 )35 0.702 0.626 0.696

)35 )10 15 40 23 6 )11 )28 0.710 0.623 0.755

)28 )11 6 23 40 15 )10 )35 0.710 0.623 0.755

)35 )16 3 22 41 60 )5 )70 0.702 0.626 0.696

)2 )1 0 1 2 3 4 )7 0.674 0.623 0.535

quadratic 0.737 0.726 0.790

(2) Sigmoidicity hypothesis

3 )3 )4 0 9 )5 0.730 0.707 0.697

15 )19 )18 18 19 )15 0.748 0.737 0.774

5 )9 0 4 3 )3 0.730 0.707 0.697

cubic 0.763 0.780 0.790

7 )9 )3 1 3 3 1 )3 0.705 0.665 0.621

21 )17 )24 0 13 15 6 )14 0.730 0.689 0.745

7 )4 )8 )5 5 8 4 )7 0.735 0.690 0.776

14 )6 )15 )13 0 24 17 )21 0.730 0.689 0.745

3 )1 )3 )3 )1 3 9 )7 0.705 0.665 0.621

cubic 0.751 0.748 0.790
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by solving the equation for the p-value calculation conversely, where the computation is

somewhat hard for K � 8 of the sigmoidicity hypothesis and the recurrence formula based on

the non-linear transformation of variables is essential.

The powers are compared in the directions of the corner vectors and also the quadratic or

cubic con®guration, where the noncentrality parameter n
P�li ÿ �l�2=r2 is ®xed at 6 so that

powers are around 0.70. It should be noted that the polynomial type test is the most powerful

test against the corresponding polynomial type con®guration and its power gives the upper

bound for all the available tests. The power attained is seen in the last line of each situation.

The extended max t tests are seen to keep relatively high powers in the wide range of the

ordered alternatives as compared with the maximin linear tests. The linear tests with

polynomial type coef®cients look very good when the changepoint is located in the middle but

too bad when it is in the end so that they cannot be recommended without any prior

information on the con®guration of mean vectors. It is just like the linear trend test in case of

the simple ordered hypothesis. Another advantage of the maximal contrast type tests is that

they can suggest a changepoint.

7. Application: testing sigmoidicity hypothesis

We apply the sigmoidicity test to the data of table 4 in Schmoyer (1984) which are originally

from an experiment performed by Dalbey & Lock (1982). We use the normal approximation

for the vector of proportions of the occurrences at respective dose levels with the dispersion

matrix diagfpi�1ÿ pi�=nig, where the pi are replaced reasonably by the maximum likelihood

estimator under the sigmoidicity hypothesis obtained in the paper. Zero estimate of p0 causes
no problem if we use another expression t � diag�Nÿ1=2s ��Q�K 0XQ�K�ÿ1Q�K

0�y for t in section 3.

The normal approximation will be acceptable since the number of replications at the

respective dose levels are ranged from 10 to 40 and also by the cumulative nature of the

statistics. Now the observed maximum is obtained as to � 2:847 at s � 3 and p value is

0.0060 by the algorithm in section 5 suggesting the assumption of sigmoidicity to be

acceptable. The suggested in¯ection point is between x4 � 28 and x5 � 32 and the convexity

assumption will be acceptable under the point. Hirotsu & Srivastava (2000) have discussed

the simultaneous upper bounds of the risks for the data and obtained those values 0.055 and

0.035 for the lowest dose level under the monotone and convexity assumptions at lower

doses, respectively, improving a naõÈ ve upper bound 0.095 based on the data at the lowest

dose level only.

8. Discussion

While a parametric model gives a very ef®cient way of the analysis of the input±output

relationship, there are often cases where those parametric models do not conform well with the

data and cannot be assumed as a basis of the analysis. On the other hand a naõÈ ve pointwise

estimate generally gives a very irregular and unstable response curve. Therefore those shape

constraints discussed in this paper will be very useful for obtaining smooth and reasonable

response curve, see Schmoyer (1984), Ramgopal et al. (1993) and Matzkin (1994), for

example. As stated in the example of section 7 the convexity property at low doses is

particularly useful for a low dose extrapolation in the toxicity analysis.

As stated in the text the isotonic regression approach will be too complicated to give an

exact procedure for those extended problems. Instead the extensions of the maximin linear test

(Abelson & Tukey, 1963) or the cumulative chi-squared statistic (Hirotsu, 1979) might be

considered. They are, however, useful as the overall trend test and cannot suggest a
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changepoint. In particular the power comparisons in section 6 has shown that the linear test is

not useful in those extended problems considered here.

An ef®cient algorithm given in section 5 depends on the simultaneous transformation of the

range of integration of Ss; s � 1; . . .;K ÿ 2, irrespective of the values of conditioning variables

and cannot be applied as it is for the C sequence (Hsu, 1979), for example, where the range of

integration is a function of the conditioning variables. Only for the exponential distribution

another ef®cient algorithm is obtained (NoeÂ , 1972).
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Appendix: corner vector of the H3

It is easy to see that the relation (8) can be written in the matrix notation as

Q�K
0l � 0; �16�

where the sth row Q�K
0�s; j�; j � 1; . . .;K; of Q�K

0 has only four elements not equal to zero,

Q�K
0�s; j� �

1

�xs ÿ xs�1��xs ÿ xs�2� ; j � s;

ÿ 1

�xs ÿ xs�1��xs ÿ xs�2� ÿ
1

�xs ÿ xs�2��xs�1 ÿ xs�2�
ÿ 1

�xs�1 ÿ xs�2��xs�1 ÿ xs�3� ; j � s� 1;

1

�xs ÿ xs�2��xs�1 ÿ xs�2� �
1

�xs�1 ÿ xs�2��xs�1 ÿ xs�3�
� 1

�xs�1 ÿ xs�3��xs�2 ÿ xs�3� ; j � s� 2;

ÿ 1

�xs�1 ÿ xs�3��xs�2 ÿ xs�3� ; j � s� 3:

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
Then it is only a tedious but not dif®cult task to verify C0Q�K � 0 and we can impose the

restriction

C0l � 0 �17�
without violating the relation (8) so that all the l satisfying (16) and (17) can be expressed as

l � C�g0; g1; g2� � Q�K Q�K
0Q�K

ÿ �ÿ1
h

with h � 0 and g0; g1; g2 arbitrary regression coef®cients.

Again it is very easy to verify

Q�K
0�c1 � � � cKÿ3� � IKÿ3

and this, together with the relation C0cs � 0, implies the equality

Q�K Q�K
0Q�K

ÿ �ÿ1� �c1 � � � cKÿ3�
showing that every model K3�s� indexed by s forms K ÿ 3 corners of the polyhedral cone

de®ned by H3.
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